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The quantisation and measurement of momentum 
observables: I1 

Kay-Kong Wan? and Keith McFarlanei 
i Department of Theoretical Physics, University of St Andrews, St Andrews, Fife, Scotland 
t School of Theoretical Physics, Dublin Institute for Advanced Studies, Dublin 4, Republic 
of Ireland 

Received 4 December 1980 

Abstract. Concepts of classical and quantum global measurability introduced in an earlier 
paper are discussed in greater detail and in the context of an n-dimensional Riemannian 
manifold. The ideas are illustrated with diagrams and examples. A notion of exact 
measurability is introduced and is shown to imply quantum global measurability. The 
physically important Killing momenta are shown to be exactly, and hence quantum globally, 
measurable. 

1. Introduction 

This paper is a sequel to and a development of a recent paper (Wan and McFarlane 
1980, hereafter referred to as paper I) in which we introduced the concepts of classical 
and quantum global measurability and motivated their study by showing that 
measurability, in either of the above senses, requires of a momentum that it be 
complete, and therefore that it be quantisable by means of geometric procedures 
(Mackey 1963, Wan and Viazminsky 1977,1979). The present paper is concerned with 
the concepts of classical and quantum global measurability in the context of an 
n-dimensional Riemannian manifold, their development, definition, and illustration by 
means of examples. A refinement of classical global measurability, termed exact 
measurability, is then introduced, shown to imply quantum global measurability, and 
moreover to be a property of the momenta associated with the physically important 
Killing vector fields. 

2. Classical momentum measurement 

The goal of this section is to construct the concept of classical global measurability in the 
context of a Riemannian manifold, and to relate it to the completeness of a momentum. 

2.1. The measurement process 

The problem here lies in the measurement of a momentum P corresponding to a vector 
field X on a complete Riemannian manifold M of metric G. Around every non-critical 
point of X there exists a local chart x i  in terms of which X assumes the form d l d x ' .  In 
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2596 K-K Wan and K McFarlane 

this chart P becomes the momentum p1 conjugate to x 1  and the metric assumes the 
usual tensor form g " ( x k ) .  In paper I we used the model of Aharanov and Safko (1975) 
to measure momenta and we shall use this model here. The model involves a collision 
between two particles, one a test particle described by unprimed quantities, and another 
a reference (measuring) particle described by primed quantities. The Hamiltonian 
describing the collision is given by 

where g" ' (x ,  x') is the parallel propagator, and w ( t )  is a function of t satisfying 

w0, t E ( O ,  T )  
{ O  t & ( O ,  T ) .  

w ( t )  = 

The non-uniqueness of the parallel propagator introduced by Synge (1971) causes no 
difficulty as we shall consider only local motion. Local motion is most simply described 
in terms of a local chart. In particular we can, in the neighbourhood of the collision, 
elect a local Cartesian chart y i  such that (see paper I) 

(3) 
1 y = b(mO)(x' - a  ') 

where mo is the point given by x i  = a ' ,  that is mo is the origin of the chart y ' .  In terms of 
y '  the Hamiltonian becomes 

where q l ' = S r '  is the Cartesian metric, and pp is the momentum conjugate to y' .  
Hamilton's equations of motion yield, upon taking the impulsive limit woTt--, y, that 
ypp = A y ' ' ,  whence we may deduce the equation connecting P, the test pzrticle's 
momentum, and Ay ' '  the measured displacement along y 1  as 

In the process the reference particle recoils by an amount and in a direction determined 
by the test particle's momentum. We can arrange the orientation of the reference 
particle prior to the interaction such that p:' = 0, i # 1, resulting in a recoil Ay '  of the 
test particle along the y '  axis, as is portrayed in figure 1. We shall adopt this option 
when employing the measuring procedure in the sequel. The parameter y is assumed 
known. 

2.2. On local measurement 

Let A be an open neighbourhood of a point mo in the configuration manifold M 
satisfying the following two conditions: (i) A is coverable by a single local chart x L  in 
terms of which the momentum P becomes p 1  conjugate to x1 and (ii) A is sufficiently 
small that the departure within A of M from a Euclidean space is negligible. Then 
expressions (3) and (4) are well defined in A. We now introduce the notion of local 
measurement. A momentum measurement is said to be executed locally in A if (i) no 
account is taken of position or momentum values without A,  so that if a momentum 
value is to be determined within A by means of the impulsive collision described above 
then neither the incident test particle, nor the reference particle employed, can so recoil 
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Figure 1. The geometry of the test/reference particle collision within the set A.  The 
trajectory of the test particle of Cartesian momenta p p  is the arc abcd, the recoil set B 
demarking the extent of the uncertainty in position of the test particle during the collision; 
and the trajectory of the reference particle, aligned with the local flow direction efc and 
bearing Cartesian momentum p;" is similarly efgh, the local set B' marking the recoil 
displacement of the reference particle during the collision. 

as to leave A,  and (ii) A must possess a certain physical size, that is it must contain an 
open sphere of some fixed radius do,  in order to be able to measure momenta 
corresponding to a given range of particle energies E =s EA. If the second condition is 
not satisfied then, for certain angles of incidence of the test particle, the reference 
particle will, after collision, so recoil as to leave A .  

In executing a local measurement in A we encounter two sources of possible error, 
one in the measurement of the reference particle recoil Ay", and therefore in the 
evaluation of p y ,  and the other in the identification of the point mo in A from which P 
may be calculated using ( 5 ) .  We shall assume that the former source of error may be 
made vanishingly small, or to be more definite we shall assume an exact measurement of 
Ay" or, as is equivalent, an exact measurement of p ? .  The latter source of error, 
however, has an intrinsic physical significance arising from the impulsive nature of the 
collision between test and reference particles which cannot be eliminated by perfection 
of the apparatus. 

As depicted in figure 1 the test particle of momentum P recoils within the 
one-dimensional set B whose extent is determined solely by the parameter y and the 
reference particle momentum p io .  It is this finite (non-zero) extent of B which gives rise 
to an irreducible error; for it is impossible to say at which point m of B the momentum 
of the test particle was determined. We are faced, therefore, with the problem of 
defining the value attributed to P by a locally executed measurement in A, and of 
quantifying the error arising from the variability of b ( m )  within B. We shall take the 
value of P as 

P = b (B)p?  (6 )  

where 
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which may be regarded as the mean value of b ( m )  in B. For the error we shall take the 
standard deviation 

2.3. Global measurability and completeness 

In paper I we introduced the concept of global measurability of P. We shall now 
generalise this notion explicitly to a Riemannian manifold. The aim is to establish a 
basically position-independent measuring process. The fundamental reason for this 
originates in quantum mechanical considerations, that is, the measurement of a 
quantised momentum should be basically position-independent so as not to conflict 
with the uncertainty principle. One then examines whether quantisable classical 
momenta possess this property, and whether it is related to the quantisability condition 
for momenta. Now in our model of measurement of classical momenta the measuring 
device is local, consisting of the reference particle (characterised by its momentum p;' 
conjugate to the local Cartesian coordinate y ' l )  which interacts with the measured 
particle with a certain fixed value of y. We shall call two measuring devices sited in the 
neighbourhoods of two distinct points ml ,  m2 in M identical if their respective local 
properties at ml and m2 are the same, that is, if they possess the same values of pi' 
and y. 

Returning to the momentum P of the test particle, let An = {A} be an open covering 
of the maximal integral curve R of the vector field X associated with P. Here every A in 
An is assumed to satisfy the conditions described in § 2.2 so that a local measurement of 
P may be performed in A. Local measurements of P in A using identical measuring 
devices produce a common value yp;' for the recoil Ay' whatever the position of the 
test particle in An i.e. values independent of the choice of Ai-. In sharp contrast the 
error ABp does depend on A. As we execute local measurements of P in A, moving 
along R and using identical measuring devices, ABP may vary unboundedly, depending 
upon the nature of the momentum involved. This would imply that we cannot 
meaningfully measure P along R using identical measuring devices. In other words we 
cannot, in general, obtain a position-independent measuring process. 

We are led to the notion of global measurability: a momentum P is said to be 
classically globally measurable iff it is possible to elect, for each integral curve R of the 
vector field X associated with P, a finite upper bound AOP to the set of errors arising 
from locally executed measurements in A E An along R using identical measuring 
devices. This concept, illustrated in figure 2, is a generalisation of the idea of global 
measurability given in paper I$. Mathematically all this, while clearly expressing 
physical intuition, is somewhat vague and ambiguous. It is necessary to give a precise 
mathematical definition. To do so we introduce families of local recoil sets. For each 
maximal integral curve R of X let {B}!, be the family of all connected arcs B of Cl of 
fixed metrical length In .  We call {B}!, a family of local recoil sets on 0. Note that In, 
while having a fixed value for a given R, can vary between integral curves. We can now 
give the desired definition: a momentum P is classically globally measurable iff, for 
every integral curve R of X ,  it is possible to elect a finite upper bound A n P  to the set of 

f Here we assume that the Riemannian manifold is well behaved [has no singular point) so that we could have 
a minimal size for A, i.e. every A contains an open sphere of some fixed common radius. This then allows the 
use of identical measuring devices along An. 
i: Different measuring devices are allowed for different integral curves. 
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Figure 2. To illustrate the local recoil sets B, defined on the integral curves of a vector field. 
The underlying graph is a family of maximal integral curves of the vector field X =  
q l (d / aq l  + q 2  a / d q 2 )  which has a set of critical points q1 = 0 which separates the flow into 
two distinct regions q ' 4 0 .  We show along typical flow lines of the vector field a 
representative group of local recoil sets B, together with the local Cartesian coordinate 
directions. 

uncertainties ABP, BE{B}I ,  (calculated with a preassigned value p :  for all B )  
generated by the family of local recoil sets {B}!,, This definition reflects our physical 
concept since for sufficiently small regions we can identify Ay' with the arc B (hence the 
name local recoil set for B)t. The relevance of global measurability is seen in the 
following theorem whose proof is a simple extension of the proof for theorem 5 in paper 
I. 

Theorem 1. On completeness and classical global measurability. A momentum P is 
classically globally measurable only if it is complete. 

3. Quantum momentum measurement 

We address in this section the problem of the global measurability of a quantum 
momentum Q(P) ,  and shall begin by considering local measurement. 

:The question arises as to whether such identification with a preassigned value of A y '  can be made 
everywhere along R. We may indeed make such an identification along R provided that the curvature K 
(Stoker 1969) of R is everywhere bounded. If there are regions in which K is unbounded then the simple 
identification of Ay'  and B fails in these regions. 
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3.1. O n  local measurement 

Let C," ( A )  and C," ( M )  be the infinitely differentiable functions of compact support in 
A and M respectively. Let Qo(P) be the symmetric operator in L 2 ( M )  given by 

Qo(P) = -ih(X + div X) (8) 

DQoW = {+ E L2(M)IIC, E c? (MI,  Qo(P)IC, E L2(M)} .  

with domain 

Then the quantum momentum Q ( P ) ,  whenever it exists, is simply (see paper I) Q A  (P) .  
Now let X I  be a chart covering A in terms of which P = pl,  the momentum conjugate to 
x l ,  Naturally one tries to construct the quantum analogues, Q(x') and Q ( p l ) ,  of the 
classical canonical pair, ( X I ,  pl).  However, neither Q(x') nor Q ( p 1 )  can be simply 
defined as a self-adjoint operator in L2(M) .  The cause of the trouble is the fact that the 
chart x' is non-global in general, so that x 1  is not well defined without A .  We should 
therefore seek operators in L2(M)  with the property that their restrictions on L2(A)  
correspond to x 1  and y , .  Such operators may not be unique. This does not matter when 
one is dealing with problems purely in A and L2(M)  as we shall be in this section. A 
natural choice of these operators is as follows. For Q ( x ' )  we define 

Q(x ' )+  = x 'xa4 + E L 2 W )  (9)  

where xA is the characteristic function of A ( x ~  ( m )  = 1, m E A,  and ,yA(m) = 0, m& A ) .  
For Q(pl) we take 

(IC: Q(pi) == Q ( P )  = Q A  ( P )  

whenever Q ( P )  exists. Confining ourselves to C,"(A) we have the following well 
defined expressions: 

~ ( p ~ ) p  = Q ~ ( P ) ~  = -ih[a/a~'+iailnJg)/ax']qo (1 1) 

where p E C? ( A )  and AQ = [(plQ2,p~-(p~Q~p)211;'. Let AAQo(P) =inf (AQdP)); 
then AAQO(P) corresponds to sup Q(x ) and to the maximum range of x1 in A .  

3.2. Global measurability ana! completeness 

Now let A be an open neighbourhood of a point m lying on a maximal integral curve n 
of X associated with P. In A the curve R is simply a coordinate curve along the 
coordinate xl, We require A to satisfy two additional conditions. (i) The arc A fl 0 has 
a preassigned metric length dn. (ii) The maximum range of x 1  (generally different from 
arc length) in A must equal the range of x 1  along the arc A fl Cl. We shall denote all such 
sets A along R by {A}n and call {A}n a reference class of local sets constructed over R. 
Note that dn is the same for every A f l  a, A E {A}n.  For different integral curves dn 
may differ. We are now ready to introduce the notion of quantum global measurability. 

Definition. A momentum P is quantum globally measurable iff, for every maximal 
integral curve of the associated vector field X it is possible to elect a finite, upper 
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bound AnQo(P) to the set of least uncertainties A A Q o ( P )  generated from a chosen 
reference class of local sets A constructed over R. 

This definition is a natural generalisation of that given in our paper I, and enables by 
analogous arguments the deduction of the following theorem. 

Theorem 2. On completeness and quantum global measurability. A momentum P is 
quantum globally measurable only if it is complete. 

Proof. Apply the argument of paper I for a similar theorem. Perhaps we should point 
out here that the notion of quantum global measurability is applicable whether P is 
complete or not, since Qo(P)  always exists, and that the least uncertainty A A Q o ( P )  in A 
corresponds to the maximum'range Ax' of x' in A. 

4. On the relationship between classical and quantum global measurability 

4.1. Two illustrative examples on global measurability 

The first example is the familiar angular momentum L, on the Euclidean plane R2. In 
terms of global Cartesian coordinates ( q l ,  q 2 )  on R2 and the corresponding chart 
(q ' ,  q2 ,  pl,  p 2 )  on T*R2,  L, assumes the familiar form L, = q ' p 2 - q 2 p l .  The associated 
complete vector field is X = q1a/aq2-q2a/aq' ,  whose maximal integral curves are 
given in terms of the flow Qt: R2-R2 by Qt(q ' , q2 )=(q1cos t -q2s in t ,  q ' s i n t +  
q2 cos t ) .  These integral curves form a family of concentric circles of centre (0, 0). The 
canonical coordinates in terms of which X assumes the form 8/86 and the metric line 
element ds2 = (dq')'+ (dq2)' the form dr2 + r2  de2 are the (almost global) plane polar 
coordinates ( r ,  0) defined in the usual manner. 

We now determine whether L, is classically globally measurable. Let us choose, for 
a representative integral curve R, = { ( r ,  e) lr  = a > 0}, a family {Be}[, of local recoil sets 
B, as the family of arcs B, of R of length 1, << 27ra centred at r = a, 0 = a. Along each 
arc B, of R we may introduce a local Cartesian coordinate y 1  defined by y 1  = u8 in 
terms of which X = aa/ay' .  It is now immediate that the quantity b ( m ) ,  m E CL,, is 
simply b ( m )  = a,  a constant independent of m E a,. Equations (6) and ( 7 )  give the 
measured value of L, to be L, = u p :  with an error AB,L, = 0. Consequently L, is 
classically globablly measurable. Furthermore it is possible to measure L, without error 
within each recoil set B,, a result which reflects the rather special character of the 
angular momentum. 

Let us now consider whether L, is quantum globally measurable. Let A. be an open 
neighbourhood of mo on R, defined by 

A. = { ( r ,  8)la - &/2 < r < a t &/2, 8 E (0, S e ) }  

and let A,, a E [0,27r), be the set obtained by rotating A .  through the angle a. We can 
choose {A,la E [0,27r)} as a reference class {A,}n, as defined in § 3.2. An illustration 
of the situation is in figure 3. It is obvious by symmetry that AA,Qo(Lz) is the same for 
every A, because every (P, E C? (A,) corresponds to (P,, E C? (A,,) and vice versa by 
rotation. It is also obvious that Aa,,Qo(Lz) = inf(AQo(L,)) is bounded; we conclude that 
L, is quantum globally measurable. Notice that Aa,Qo(L,) is the same for every A,. 

As the second example we consider the momentum P = (4' -q2)pl  + (4' + q 2 ) p 2  
again on the Euclidean plane R2. The associated complete vector field is X =  
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Figure 3. To illustrate the maximal integral curves of L, and of a representative grid of the 
polar coordinate system ( r ,  0). We also illustrate on the figure some typical local recoil sets 
B, and some local sets A,. 

(4' - q2)a/aq1 + ( q l  + q2)d/aq2 whose maximal integral curves are given in terms of the 
flow map cDt: R2++ R2 by 

(Pt (q ' ,q2)=et (q 'cos t -q2s in t ,q ' s in t+q 2 cost). 

Geometrically these are spirals radiating from the critical point at the origin. A set of 
coordinates (XI, x2)  in terms of which X assumes the form 8la.x' and the metric line 
element ds2 the form ds2 = 2 e~p[2(x '+x~)] [ (dx ' )~  + ( d ~ ~ ) ~ ]  may be defined using 
plane polar coordinates by 

x 2  =:(In r - e). 
Some integral curves of X and a representative grid of coordinates ( x ' , x 2 )  are 
displayed in figure 4. Given a maximal integral curve slo = {(x', x2)1x2 = x:}, we can 
introduce a parameter s(xl)  by 

x * = $(In r + e) 

X I  

(14) s ( x  1 ) =  2 1 / 2 e x p ( x ' + x ~ ) d x 1 = 2 1 / 2 e x p ( x ' + x ~ )  I_, 
which measures the metrical arc length from the critical point of X to the point (x', xi) 
on 0, and in terms of which the quantity b(mo) along Cl, takes the value b(mo)= 
aslax' = 2ll2s. 
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- s a J  ' ' 

Figure4. To illustrate the maximal integral curves of the vector field X = 
(q' - q2)d /dq1  + (q' + q2)a/aq2. The maximal integral curves of X are the marked counter- 
clockwise spirals emanating from the origin of coordinates, the second family of curves 
being a representative set of coordinate arcs perpendicular to the integral curves of X .  

Returning to the question of the classical global measurability of P, we choose as 
the family of local recoil sets the family {BaIcy si do} of arcs B, of S lo  each of metric 
length d o  and centred at s = cy on Roe Now equations (6)  and (7) give the measured 
value of P expected in B, to be P = b(B,)p; with error AB,P = 6-1'2do/p; 1, which is 
independent of a. Hence P is classically globally measurable. 

Finally, addressing the problem of the quantum global measurability of P, we 
construct on no a reference class {A,Icu a i d o }  of local sets A,  with the property that 
A,  flSlo=B,. It follows from equation (14) that the range of X' within A,  is 
ln[(2cy + do)/(2a -do)]  and hence the least uncertainty is given by 

Aha,Qo(P) 2 %/ ln[(2a + d0) / (2a  - doll 

which tends to infinity as cy tends to infinity?. As a result P is not quantum globally 
measurable. This serves as a counter example to show that classical global measurabil- 
ity does not imply quantum global measurability. Furthermore, counter examples 
given in appendix 1 show that quantum global measurability does not imply classical 
global measurability either, and that the converses of both theorems 1 and 2 are false in 
general. 

i The approach to the critical point as q'++-w presents no problem since A,,Qo(P)-O as a ++$do. 
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4.2. Exact classical global measurability 

Having observed that neither all complete, nor ail classical globally measurable, 
momenta are quantum globally measurable, we now enquire whether it is possible to 
identify a physically important subclass of the complete momenta which are both 
classically and quantum globally measurable. To this end we introduce a refinement of 
classical global measurability as follows. 

Definition. A momentum P is exactly classically globally measurable (exactly measur- 
able) iff there exists a family {B}l,  of local recoil sets for every maximal integral curve R 
of the associated vector field with the property that the error ABP in every B is zero. 

This concept is motivated by recognition of the unique character of these momenta 
in being globally measurable without error. A prime example of these is the angular 
momentum Lz studied in § 4.1. The relevance of exact measurability lies in the 
following three theorems. 

Theorem 3. (see appendix 2) Practical criteria for exact measurability. Let P = ( ' ( q ) p ,  
be a complete momentum with the associated vector field X = t ' (q)a/dq' .  Then P is 
exactly measurable iff either (1) for every maximal integral curve R = R(s) parametrised 
by its arc length s, the quantity b ( m )  = b ( s )  is constant along R(s) or (2) t ' ( q )  satisfy the 
equation 

M(t2lj + t , l l )  = 0 

in every chart q' (the vertical bar denotes covariant differentiationj. 

Theorem 4. (see appendix 2) On exact measurability and quantum global measurability. 
If a momentum P is exactly measurable then it is quantum globally measurable. 

Theorem 5. (see appendix 2) On Killing momenta and exact measurability. Every 
complete Killing momentum P defined by the requirement that its associated vector 
field X is Killing is exactly measurable and therefore quantum globally measurable. 

These theorems demonstrate the cohesion and physical relevance of the concepts of 
global measurability because these notions apply to the physically important Killing 
momenta. These theorems also tell us the property of the Killing momenta concerning 
measurement. Quantum mechanically an exactly measurable P has the further feature 
that the error AAQo(P) depends only on the length do of A and the particular integral 
curve Cl over which A is defined, but does not depend on the exact location of A on R. 
In particular a Killing momentum like L, on R2 can be measured quantum mechanic- 
ally along its integral curves with identical least error. 

5. Conclusions 

We have generalised the concepts of global measurability and introduced the notion of 
exact measurability. We have shown the existence of a large and physically important 
class of momenta, i.e. the Killing momenta, which are complete, hence quantisabie, and 
are exactly measurable, hence classically and quantum globally measurable. We have 
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also established the following relationships between completeness and measurabilities: 

{exact measurability} * {classical global measurability} e 
{exact measurability} =$ {quantum global measurability} e 
{completeness} e {classical global measurability} 

8 

e 
;r, 

{completeness} {quantum global measurability} 

8 
e {classical global measurability} {quantum global measurability}. 
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Appendix 1. Counter examples 

A l . l .  The failure of the converse of theorems 1 and 2 

Consider, in the Euclidean space OB with global Cartesian chart y, the momentum 

p = 5(Y )P, 

(i) P is complete. We have that 

t ( y )  = y 3 / ( 1  + y 2  sin2 y) .  

( n + l ) r  ( n + l ) w  

5-'(y) dy = (n +3)/[n2(n + 1)27r2]+ I y-' sin2 y dy I, w nw 

s ( n  +$)/[n2(n + 1)2.rr2]+(n + l)-'.rr-' [('+')"sin2 y dy 
J n w  

= ( n  +3)/[n2(n + ~ ) ~ . r r ~ ] + b ( n  +I)-'. 

Hence, V y o >  0 J:o &-'(y) dy WOO 

Similar results hold for yo < 0; hence P is complete. 

the range within A of coordinate x in which r ( y )  d/dy goes to dldx is 

as y HOO. Also J;o (-'(y) dy H-CO as y W O .  

(ii) Quantum global measurability. For any interval A = (y, y + d) of fixed length d, 

y+d 

Ax = 1, 5 - ' ( ~ )  dy y >o .  

This is easily seen to tend to zero as y WOO. Hence AAQ(P) is unbounded and P fails to 
be quantum globally measurable. 
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(iii) Classical global measurability. It will suffice to show that the errors ABb 
generated by the class of sets B, = ( n r ,  n7r + d )  for every fixed d > 0 increase without 
limit as n tends to infinity. Setting B, = (a,  p )  and considering the mean b(B,) we have 
that 

P d 

b(B,)  = d-' 1 [ ( y )  dy <dd-'p3 lo (1 + a 2  sin2 y)-' dy. 
a 

Therefore, upon noting the integrals 
d<rr/2 

lo (1 + a 2  sin2 y)-' dy = (1 tan-'[(1 +a2)1 /2  tan d ]  

d<.rr/2 

lo (1 + a 2  cos2y)-' dy = (1 tan-'[(l + ( Y ~ ) - ' / ~  tan d ]  

we may deduce the upper bound 

b (B,) &3 3d-1 ([2d/  7r] + $)T( 1 + a 2)-1'2 

in which [2d/.rr] denotes the integer part of 2dl1r. To obtain a lower bound to the 
corresponding errors Ae,b, we consider the integral 

-13 .d 

q(B,) = d-' J ' [ ' ( y )  dy 3 d - ' a 6  J (1 + p 2  sin2y)-' dy 
a 0 

which together with the identity 

jo (1 + p 2  sin2 y)-' dy 
d<.n/2 

p2  sin d cos d 
2(1 +p2)(1 + p 2  sin2 d )  

- - (1+4p2) tan-1((l+/32)1/2 t and)+  
(1 +p2)3/2 

yields the bounds 

zd 1 -1 a 6 (1 +:p2)(l +p2)-3/27r 

d- 'a6(1  +tp2)(1 +p2) -3 /2  tan-'[(l +p2)' l2 tan d ]  

d 3 7r/2 
d B , )  3 [ 

d < 7212. 

Finally observe that for sufficiently large p or equivalently sufficiently large n, (1 + 
p2)li2 tan d > 1, and that therefore in all cases we have that for sufficiently large n ( d )  

q(B,) 2 $d-'a6(1 + iP2)(1 + p2)-3/27r. 

Finally, since ABnb = q(B,) - b2(B,) we obtain the asymptotic lower bound AB,b - 
7ra5/8d -CO, as was required. 

A1.2. Quantum and classical global measurability 

Consider, again in R, the momentum P = f (y)p, ,  f ( y )  = y2/(1 + y 4  sin2 y ) .  Using a 
procedure similar to § A l . l  above one can readily verify that this P is complete and 
quantum globally measurable, but is not classically globally measurable. 
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Appendix 2. On exact measurability 

A2.1. Proof of theorem 3 

Part one is obviously true. So only part two needs proving. Let x i  be a chart in terms of 
which X = eia/aqi = a/ax'. Let the metric in charts qi  and x i  be denoted respectively 
by gii(q) and &(x). Then b 2 ( m )  = gll(x) (see appendix 4 of paper I), or b 2 ( m )  = 
gii(aq'/ax')(aqi/ax') = gijti&' (evaluated at m E a). Evaluating at m E IR and along we 
have 

ab/& = oeab /ax '  = o a [ k a / a q k ( g i i t i t j )  = o 
the last expression leading directly to the required result. 

A2.2. Proof of theorem 4 

P being exactly measurable implies that b ( s )  = bo, a constant by theorem 3. Using 
b = &/ax', we have d x l =  bo' ds which, after integriting, gives the maximum range 
Ax' = bo' As. Since As = do  is the same for every local set A, Ax' is also the same for 
every A. Consequently AAQo(P) the least uncertainty corresponding to the maximum 
range Ax' is the same for every A resulting in the quantum global measurability of P. 
Notice also that AAQo(P) is the same for every A. 

A2.3. Proof of theorem 5 

This follows from theorem 3 since a Killing momentum P = &'pi satisfies the Killing 
equations tili + tili = 0. 
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